

SUMMER – 19 EXAMINATION Subject Name: Mechanical Engg. Measurement **Model Answer**

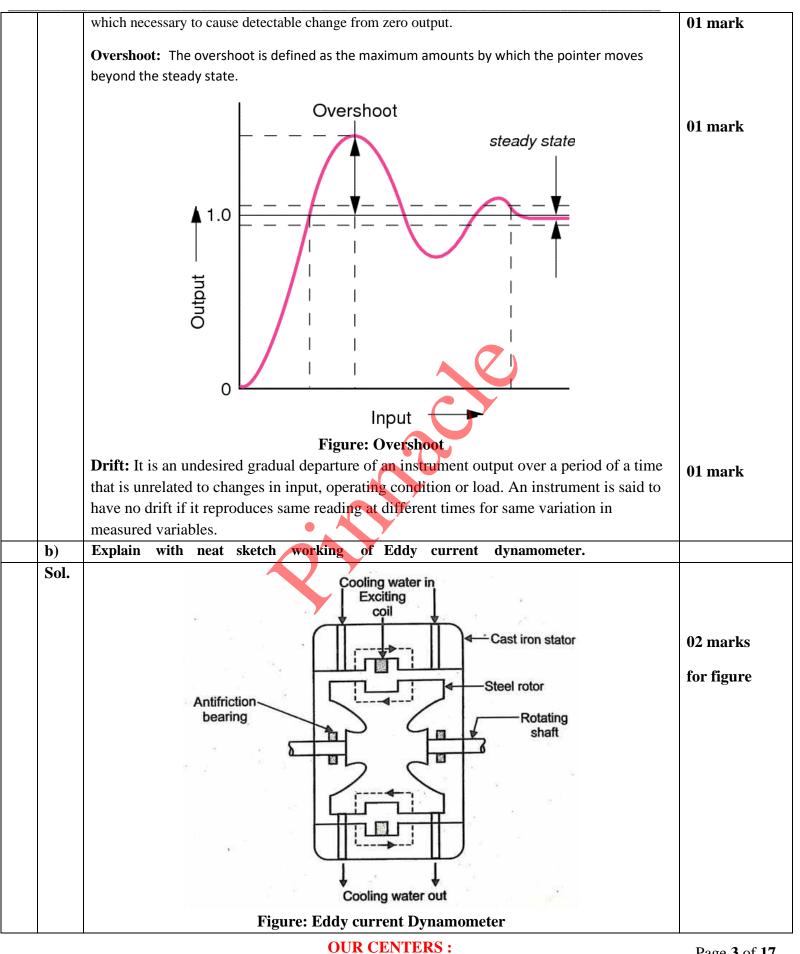
Subject Code 22443

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1.	Attempt any <u>FIVE</u> of the following:	10 Marks
a)	State the parameters for selection of displacement transducer.	
Sol.	Operating principle	(Any four)
	Operating range	¹ / ₂ mark eac
	Accuracy	72 mark each
	Error	
	Transient & Frequency response	
	Loading effect	
b)	Enlist the applications of load cell.	
Sol.	i) Scale	(Any Two)
	Ex. Weighbridge	01 mark eac
	ii) Force gauges:	
	Ex. Torque gauge	
	iii) Measuring instruments:	
	Ex.: Laboratory balance, Industrial scale, Platform scale, Universal testing machine	
c)	State the law of intermediate metal.	
Sol.	"The introduction of a third metal into the thermocouple circuit will have no effect on the	02 marks
	EMF generated, as long as the junctions of the third metal with the thermocouple metals	
	are at the same temperature."	
d)	State the materials of tube and float of rotameter.	
Sol.	Material for tube: Borosilicate Glass, polycarbonate plastic, metallic tube of aluminum,	01 mark
	brass etc.	
	Material for float: Gun metal, Stainless steel.	
		01 mark

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228



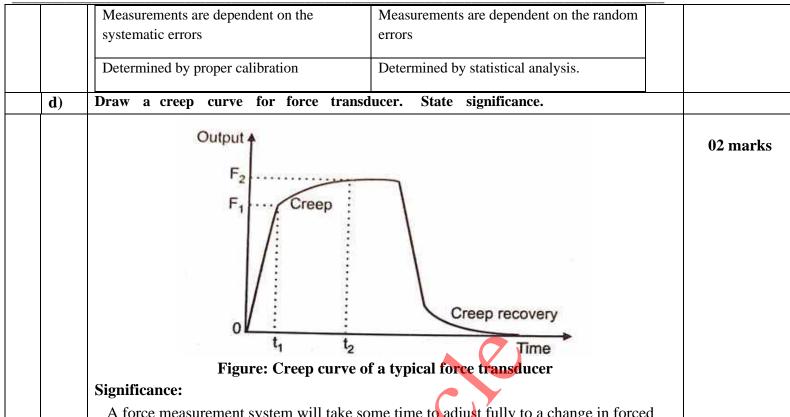
e)	Define gauge factor.	
Sol.	Gauge Factor: It is a ratio of change in resistance to the stain. Gauge Factor = $\frac{\text{Change in resistance}}{\text{Strain}}$ $G_f = \frac{\frac{\Delta R}{R}}{\frac{dl}{l}}$	01 mark
		01 mark
f)	State the principle of working of slipping clutch tachometer.	
Sol.	Slipping Clutch tachometer helps by allowing the clutch to partially slip until the rotational speed matches measuring speed.	02 marks
g)	State the characteristics of force measurement.	
Sol.	Output Best-fit straight line through zero Rated output Decreasing applied force applied force Increasing applied force applied force Rated force Applied force Rated force Figure: Output characteristics of force measurement system	01 mark 01 mark
	Characterising the performance of a force measuring system is commonly based on calculating such a best fit least squares lines and stating the measurement errors with respect to it.	VI mars
Q.2.	Attempt any <u>THREE</u> of the following:	12 Marks
a)	a) Define: (i) Fidelity (i i) Threshold (i ii) Overshoot (iv) Drift	
Sol.	Fidelity: Fidelity of an instrumentation system is defined as the degree of closeness with which the system indicates or records the signal which is impressed upon it. It refers to the ability of the system to reproduce the output in the same form as the input. If the input is a sine wave then for 100 % fidelity, the output should be a sine wave.Threshold: When the input signal to an instrument is gradually increased from zero, there will be some minimum value input before which the instrument will not detect any output change. This	01 mark

		
	Working:	
	✓ When the dynamometer is under operation, the rotor turns and it causes a constant change in the flux density at all parts of the stator	02 marks
	✓ Consequently eddy currents are induced in the stator which oppose the	
	rotation of rotor.	
	\checkmark The movement of resistance is measured by the brake arm and so the	
	torque and shaft can be estimated.	
	✓ Mechanical power supplied to the dynamometer shaft is converted into heat which is then carried by air circulation induced by the rotor tooth acting as blower vanes and partly by water circulation through cooling channels formed in the stator.	
c)	Explain with neat sketch Pirani gauge. State advantages also.	+
Sol.	Milli ammeter	01 mark
	Figure: Pirani gauge	
	Construction:	
	✓ Consists of platinum filament wire enclosed in a chamber connected to unknown	01 mark
	pressure source.	
	✓ Filament forms an arm of Wheatstone-bridge.	
	\checkmark Compensating resistance is placed in opposite arm.	
	Working:	
	Pirani gauge operates on 3 modes:	
	(i) Constant current,	
	(ii) Constant resistance and	01
	(iii) Constant voltage.	01 mark
	✓ Due to constant current, filament gets heated .	
	OUR CENTERS :	Page 4 of 1 '

	✓ At low pressure , thermal conductivity gets reduces.	
	 Temperature variation lead to resistance variation of filament and unbalances the W- 	
	bridge.	
	✓ Change in resistance of wire filament gives value of unknown pressure.	
	Advantages:	
	✓ Simple in design & easy in use .	01 mark
	\checkmark More accurate than thermocouple gauges.	
	✓ Remote reading is possible.	
	✓ Range is between 10^{-5} mm to 1 mm of Hg	
	 ✓ Range is between 10⁻ min to 1 min of fig ✓ Quick and Continuous response to pressure changes. 	
d)	Describe the working principle of "Dall tube". Also state applications.	
Sol.	Describe the working principle of Dan tube . Also state applications.	
	Pressure tap Figure: Dall tube Working: It is another restriction type primary element for flow measurement. It is a shortened/modified form of a Venturi meter. The differential pressure	1 mark for figure
	of Dall tube is midway of-the orifice and venturi tube. It consists of two sections, with relativity large cone angle. The short straight inlet followed by an abrupt decrease in diameter. A narrow annular slit separates the short inlet and divergent outlet. The throat is formed by a circumstantial slit located between the inlet and outlet cones. The higher pressure is measured at circular slit area, and lower pressure is-measured at upstream. Typically a lithium coating is provided to avoid corrosion of the device by the fluids. The differential pressure produced by Dall tube is much higher, nearly doubled to that of Venturi meter having the same upstream and throat	02 marks

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

	, diameters with the same net head loss. , It. causes a very low-pressure loss	
	compared to other differential pressure flow elements. Up to '95% Differential	
	pressure can be recovered.	
	Applications:	
	i) Applicable to where a significant pressure drop is not tolerated.	
	For example : Gas transmission pipeline	01 mark
	ii) Flow measurement in circular tube	
.3.	Attempt any <u>THREE</u> of the following:	12 Marks
a)	Explain radiation pyrometer with neat sketch.	
	Hot object Lens Mirror Detector Temperature Indicator	02 marks
	Figure: Radiation pyrometer Principle:	02 marks
	It is based on the principle of absorption of total radiation from hot body.	
	 Construction and Working: ✓ It consists of blackened tube open at one end to receive the radiation from the hot body whose temperature is to be measure. 	
	✓ The other end of the tube has a sighting aperture in which an adjustable eyepiece is fitted.	
	\checkmark The thermal radiation from hot body strike on the concave mirror.	
ļ	Desition of the minute can be adjusted by near and minion among among the	
	✓ Position of the mirror can be adjusted by rack and pinion arrangement for focusing the thermal radiations on the detector disk.	
	 thermal radiations on the detector disk. ✓ The detector disk is a platinum sheet ✓ The disk is connected to the thermocouple 	
	thermal radiations on the detector disk.✓ The detector disk is a platinum sheet	

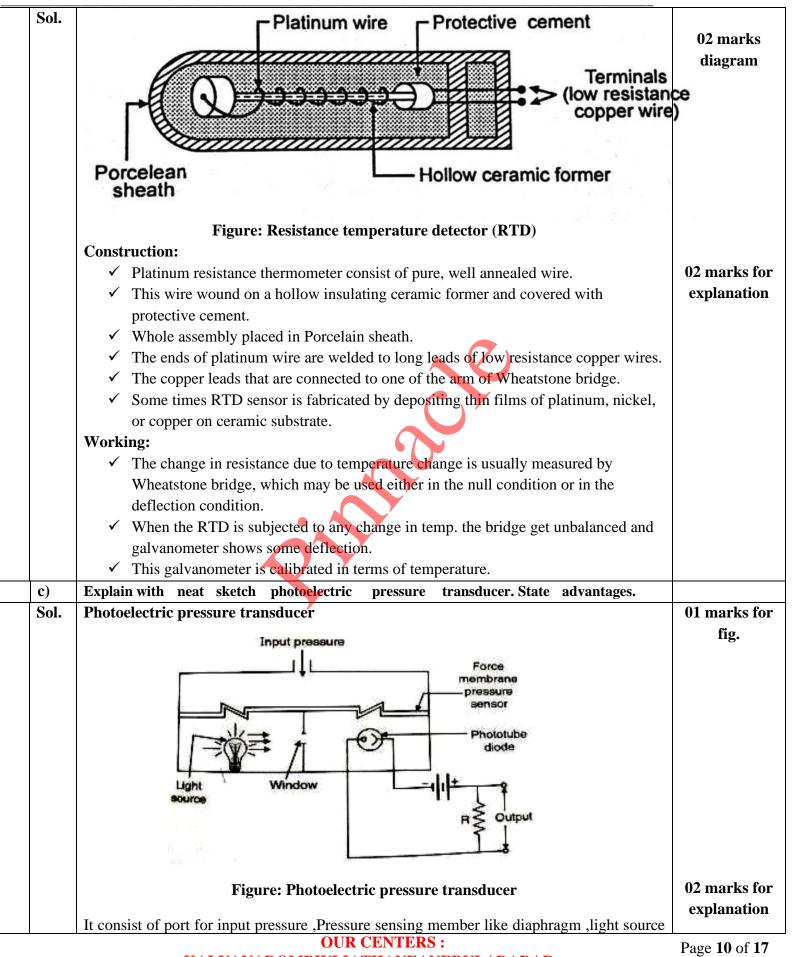


Sol.			TRANSDUCER	04 marks
501.		1		04 mai ks
	e.g- Sj	Mechanical Transducer pring Balance ourdon tube Pressure Gauge	Electrical Transducer	
		e.g l	· · · · · · · · · · · · · · · · · · ·	
c)	Diffono			
		ntiate: ange and Span ccuracy and Precision		
Sol.	i) Com	pare Range and Span		Any 02
	Sr. No.	Range	Span	difference
	1	It is defined as region between lower limit to upper limit of an instrument	It is algebraic difference between upper limit and lower limit of the instrument	(01 mark each)
	2	Eg. If thermometer is used to measure temperature between 0° C to 100° C	Eg. If thermometer is used to measure temperature between 0° C to 100° C	
		Range:- 0°C to 100°C	Span:- 100° C - 0° C = 100° C	
	ii) Com	pare Accuracy and Precision		
		Accuracy	Precision	
	reading	e closeness with which an instrument g approaches to the true value of the ty being measured.	It is the degree of reproducibility among several independent reading of the same true value under specified condition.	Any 02 difference (01 mark each)
		pressed as the limit of error of a ring g device	It is composed of two characteristics, conformity and no of significant digits	each)
		acy of measurement means mity of the truth.	Precision refers to degree of agreement within group of measurement.	
	full sca	ssed on the basis of % actual scale or ale reading. Accuracy necessarily is recision.	Precision in measurement does not guaranty accuracy.	

A force measurement system will take some time to adjust fully to a change in forced applied, and creep of a force transducer Is usually defined as the change of output with time following a step In ref se In force from one value to another. Most manufacturers specify the creep as the maximum change of output over a specified time after increasing the force from zero to the rated force. Figure follows an example of a creep curve where the transducer exhibits a change in output from F_1 to F_2 over a period of time from t_1 to t_2 after a step change between 0 and t_1^{\bullet} In figure:; this might be, say, 0.03% of rated output over 30 minutes.

Creep recovery is the change of output following a step decrease in the force applied to the force transducer, usually from the rated force to zero. For both creep and creep recovery, the results will depend on how long the force applied has been at zero or the rated value respectively before the change of force Is made.

The frequency response of a force transducer is affected by the nature of the mechanical structure, both within the transducer and of its mounting. A force transducer on a rigid foundation will have a natural frequency of oscillation and large dynamic errors occur when the frequency of the vibration approaches the natural frequency of oscillations of the system.


The effect of temperature changes is felt on both the zero and rated output pf the force measurement system. The temperature coefficient of the output at zero force and the temperature coefficient of the sensitivity are measures of this effect for a given system. A force measurement system may need to be kept at constant temperature, or set-up well in advance, to settle in 02 marks

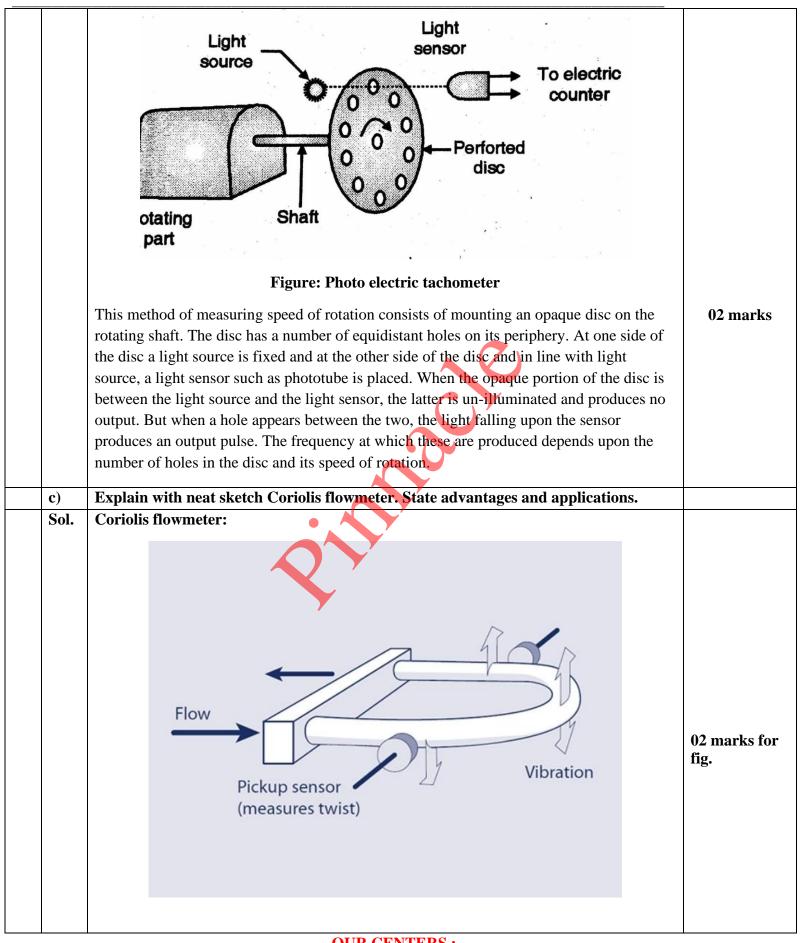
b) to the ambient conditions if high accuracy measurements are required. In some cases the temperature gradients within the measurement installation create a problem even when the average temperature is stable. Other influence quantities such as humidity. pressure, electrical power changes or radio-frequency Interference may have analogous effects to those of temperature and may be considered in a similar manner. Any difference between the indicated value of force and the true value is known as an error of measurement (although note that strictly a true' value can never be perfectly known or indeed defined and the concept of uncertainty takes this into account). Such errors are usually expressed as either a percentage of the force applied at that particular point on the characteristic or as a percentage of the maximum force - see the difference between % reading and % full scale reading The rated capacity is the maximum force that a force transducer is designed to measure. 12 Marks a) Explain the working of slip ring sensor with new sketch. 02 marks for diagram Sol. Slip ring Sensor 02 marks for explanation several ways. For a sorque measurement to position of strain gauge in this way. For pressure, tension and bending measurement to position of strain gauge in this way. For pressure, tension and bending measurement to position of strain gauges are different for the ransfer of the signal from moving roor to start terminals the sign from the special contacts with mercury or contactless telemetry data transfer			
Q.4. Attempt any <u>THREE</u> of the following: 12 Marks a) Explain the working of slip ring sensor with near sketch. 02 marks for diagram Sol. Slip ring Sensor 02 marks for diagram Figure: Slip ring sensor 02 marks for explanation The principle is based on torsion part of shaft and its torsion. Measurement of torsion of the shaft is possible in several ways. For a torque measurement we must place these strain gauges are different for the transfer of the signal from moving rotor to stator terminals the slip rings are used in this way the signal is partly interfered. It is also possible to use instead of slip rings the special contacts with mercury or contactless telemetry data transfer 02 marks for explanation		 some cases the temperature gradients within the measurement installation create a problem even when the average temperature is stable. Other influence quantities such as humidity, pressure, electrical power changes or radio- frequency Interference may have analogous effects to those of temperature and may be considered In a similar manner. Any difference between the indicated value of force and the true value is known as an error of measurement (although note that strictly a 'true' value can never be perfectly known or indeed defined and the concept of uncertainty takes this into account). Such errors are usually expressed as either a percentage of the force applied at that particular point on the characteristic or as a percentage of the maximum force - see the difference between '% reading' and '% full scale reading 	
a)Explain the working of slip ring sensor with near sketch.02 marks for diagramSol.Slip ring Sensor 02 marks for diagram $figure: Slip ring sensor02 marks fordiagramfigure: Slip ring sensor02 marks foreventfigure: Slip ring sensor02 marks forexplanationThe principle is based on torsion part of shaft and its torsion. Measurement of torsion ofthe shaft is possible in several ways. For a torque measurement we must place these straingauges are different for the transfer of the signal from moving rotor to stator terminals theslip rings are used in this way the signal is partly interfered. It is also possible to useinstead of slip rings the special contacts with mercury or contactless telemetry data$		measure.	12 Montra
Sol. Slip ring Sensor 02 marks for diagram Image: Sol. Slip ring Sensor 02 marks for diagram Image: Slip ring sensor Figure: Slip ring sensor 02 marks for explanation The principle is based on torsion part of shaft and its torsion. Measurement of torsion of the shaft is possible in several ways. For a torque measurement we must place these strain gauges are different for the transfer of the signal from moving rotor to stator terminals the slip rings are used in this way the signal is partly interfered. It is also possible to use instead of slip rings the special contacts with mercury or contactless telemetry data transfer 02 marks for explanation			12 Marks
diagram diagram diagram diagram diagram diagram diagram diagram server statistic priority of the server of the ser			02 marks for
The principle is based on torsion part of shaft and its torsion. Measurement of torsion of the shaft is possible in several ways. For a torque measurement we must place these strain gauge in this way. For pressure, tension and bending measurement the position of strain gauges are different for the transfer of the signal from moving rotor to stator terminals the slip rings are used in this way the signal is partly interfered. It is also possible to use instead of slip rings the special contacts with mercury or contactless telemetry data transfer		Rotor Bearing Bearing	02 marks for
b) Describe the working of platinum resistance thermometer with neat sketch.		The principle is based on torsion part of shaft and its torsion. Measurement of torsion of the shaft is possible in several ways. For a torque measurement we must place these strain gauge in this way. For pressure, tension and bending measurement the position of strain gauges are different for the transfer of the signal from moving rotor to stator terminals the slip rings are used in this way the signal is partly interfered. It is also possible to use instead of slip rings the special contacts with mercury or contactless telemetry data	
	b)	Describe the working of platinum resistance thermometer with neat sketch.	

KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

		 ,a small window, a photo tube with output circuit. The function of pressure sensing element is to control the aperture of small window. The amount of output is entirely depends upon the amount of incident light falling on phototube. When the pressure to be measured is applied through port to the pressure sensing member, it changes the position of window. As the light source and phototube are separated by a window it changes the amount of light falling on phototube, causing change in the current. This change in current is approximately linear with displacement of window i.e applied pressure. The current in phototube is amplified by a suitable output circuit. A meter connected across output terminal can directly calibrate in terms of pressure measurement. An A.C Modulated light or stable source of light can be used for incident light. Advantages: 1. It can measure both static & dynamic pressure. 	01 mark
		2. It is highly efficient	
		3. Easy portability	
		4. Compact size.	
ļ	d)	State any four desirable characteristics of bonded type resistance strain gauges.	
	<u> </u>	Desired characteristics of bonded type Resistive strain gauges	
		 Small size and very low mass. Fully bonded to basic spring structure. Excellent linearity over wide range of strains. Low and predictable thermal effect 	Any four (01 mark each)
.		5. Small surface area.	
		6. Low leakage.	
		7. High insulation	
	e	Explain with neat sketch carbon microphone. State disadvantages.	
┝──┦	i	Caubau Bilanaubaua	01 marks
		Carbon Microphone Carbon Granules Sound Javes Front Plate It is also referred as button microphone or a carbon transmitter. Fig. show carbon	01 marks diagram
		OUR CENTERS :	Page 11 of 17
		KALYAN DOMBIVLI THANE NERUL DADAR Contact 0136008228	

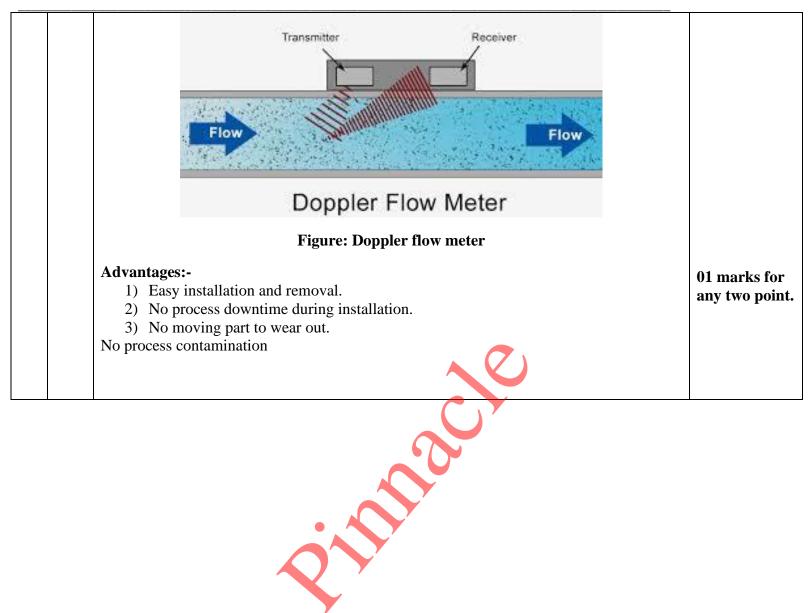
Contact - 9136008228

	microphone. It consists of two metal plates separated by carbon granules. One plate is on the face and acts as a diaphragm. When sound strikes the face plate, a current runs from one plate through the carbon to the other plate. The carbon granules changes the electric resistance between the plate. The resistance causing change in the current and a consequent change in voltage which is the output of the microphone. The principle advantage of carbon microphone is that they have the ability to produce high level audio signals from very low dc voltage.	02 marks explanation
	Disadvantages	01 mark for
	1. Low quality of sound reproduction.	disadvantages
	2. Limited frequency response.	
	3 It required external power source.	
Q.5.	Attempt any <u>TWO</u> of the following:	12 Marks
a)	Classify errors and explain any two of errors.	
Sol.	Errors may originate in a variety of ways and the following sources need examination:	02 marks for
	1. Instrument errors	classification
	2. Environmental errors	
	3. Translation and signal transmission errors	
	4. Observation errors	
	5. Operational errors	
	6. System interaction errors 1. Instrument error:	02 marks each
	There are many factors in the design and construction of instruments that limit the	for
	accuracy attainable. Instruments and standards posses inherent inaccuracies and certain	explanation of
	additional inaccuracies develop with use and time.	any two types
	Example:	of error
	a. Improper selection and poor maintenance of instrument.	orenor
	b. Loss of motion due to necessary clearance in gear teeth and bearing.	
	c. Excessive friction at the mating parts etc.	
	or	
	2. Environmental Error:	
	The instrument location and the environment errors are introduced by using an	
	instrument in conditions different for which it has been designed, assembled and	
	calibrated. The different conditions of use may be Temp., Pressure, humidity and altitude	
	etc.	
	Following are the methods are used to reduce the environmental errors:	
	1. Use the instrument under the condition for which it was originally assembled and	
	calibrated.	
	2. Measure the deviation of local condition and apply suitable correction to the	
	instrument.	
	3. Make the complete new calibration under the local condition.	
	Or 3 Translation and signal transmission arrors:	
	3. Translation and signal transmission errors:	
	OUD CENTEDS .	



	\checkmark The instrument may not sense or translate the measured effect with complete	
	fidelity.	
	\checkmark The error also includes the non capability of the instrument to follow rapid	
	changes in the measured quantity due to inertia and hysteresis effects.	
	\checkmark The error may also result from unwanted disturbances such as noise, line pick up,	
	hum, ripple etc.	
	The errors are remedied by calibration and by monitoring the signal at one	
	or more points along its transmission path.	
	or	
	4. Observational Error:	
	"Instruments are better than the people who use them."	
	1. Parallax	
	2. Inaccurate estimate of average reading	
	3. Incorrect conversion of units in between consecutives readings	
	4. Personal bias i.e. a tendency to read high or low.	
	5. Wrong scale reading and wrong recording data.	
	or (7)	
	5. Operational Error:	
	"Quite often errors are caused by poor operational techniques"	
	Example:	
	1. A differential type of flow meter will read inaccurately if it is placed immediately	
	after a valve or bent.	
	2. A thermometer will not read accurately if the sensitivity portion is insufficiently	
	immersed.	
	3. Pressure gauge will correctly indicate pressure only when it is exposed only to the	
	pressure which is to be measured.	
b)	State the necessity of contactless electrical tachometer and describe with neat sketch	
,	photoelectric tachometer.	
 Sol.	Necessity of contactless electrical tachometer:-	
501	1) To measured speed without physical contact.	02 marks
	2) Operated at distance from rotating shaft.	
	3) Do not transfers load to shaft.	
	4) For more accuracy.	
	Photo electric tachometer:-	02 marks
		02 mai K5

		Figure: Coriolis flowmeter	02 marks
		The operation principle of a coriolis flow meter is basic but very effective. A coriolis flow meter contains a tube which is energized by a fixed vibration. When a fluid (gas or liquid) passes through this tube the mass flow momentum will cause a change in the tube vibration, the tube will twist resulting in a phase shift. This phase shift can be measured and a linear output derived proportional to flow.	for explanation
		 Advantages:- 1) It can direct take measurement of mass flow with high accuracy. 2) It has wide range of measurable fluids, including high viscosity fluids, liquid – solid two phase fluids. 3) The change in fluid viscosity has no significant effect on the measured value. 4) Bidirectional flow measurement. 	01 marks for any two points
		 Application:- 1) In chemical process where fluids can be corrosive. 2) It is used where the physical properties of the fluid are not well know. 	01 marks for any two points
Q	.6.	Attempt any <u>TWO</u> of the following:	12 Marks
	a)	Draw a labelled block diagram of FFT analyser. State the advantages and applications.	
	Sol.	Atten filter Sampler Display Input Atten filter Sampler ADC FFT Display	02 marks for fig.
		Figure: Block diagram of FFT spectrum analyzer	
		 Advantages of FFT Analyzer:- 1) It is measure all frequency components at the same time. 2) The magnitude is a real quantity and represents the total signal amplitude in each frequency bin, independent of phase. 	02 marks
		 Application of FFT Analyzer:- 1) To measure the transfer function of a mechanical system. 2) In forensics, laboratory for measuring the wavelength of light at which a material will absorb in the infrared rays. 	02 marks
	b)	Describe with the neat sketch working of Hair Hygrometer. Enlist disadvantages.	
	Sol.	Hair hygrometer:-	02 marks for fig.



	(150/12C - 2/001 - 2015 Certified)	ENGINEERING
	Hair hygrometer is the simplest and oldest type of hygrometer. It is made using hair. Human hair lengthens by 3 percent when the humidity changes from 0 to 100 percent, this property of hair can be used to operate a pointer or recording pen through a system of mechanical linkage. The transducer element consists of strands of hair which are generally arranged parallel to each other. It is not a precision instrument and not recommended where high degree of accuracy is requires. The change in length can be used to control a pointer for visual readings or a transducer such as linear variable differential transformers (LVDT) for an electrical output. Disadvantages: 1) Rapid changes in humidity magnify the error recorded by the hair hygrometer. 2) The hair sample can become damaged due to continuous tension. 3) Increase sensitivity to rapid changes in humidity limits.	03 marks for explain 01 marks for any two point
c)	Define ultrasonic flow measurement. Describe working principle of doppler flow	
	meter with two advantages.	
Sol.	Ultrasonic Flow Measurement: It is a type of flow meter that measures the velocity of a fluid with ultrasound to calculate volume flow.	01 mark for define
	Doppler flow meter:- It is operates on the principle of the Doppler effect. The frequencies of the sound waves received by an observes are dependent upon the motion of the sound. A Doppler flow meter uses a transducer to emit an ultrasonic beam in to the stream flowing through the pipe. For the flow meter to operate there must be solid particles or air bubbles in the stream to reflect the ultrasonic beam. The motion of particles shifts the frequency of the beam which is received by a second transducer. The Doppler flow meter relies on particles flowing in the liquid to operate, consideration must be given to the lower limits for concentration and sizes of solids or bubbles. In addition the liquid must flow at a rate high enough to keep the solids suspended. The Doppler flow meter must have particles or bubbles to reflect the ultrasonic signals.	02 marks for explain 02 marks for fig.

